

Edexcel International Chemistry A-level

Practical 5

Investigating the Rates of Hydrolysis of Halogenoalkanes

Method

- 1. Set up 3 test tubes, each with 1 cm³ of ethanol and two drops of a different haloalkane (iodo/bromo/chloro alkanes) and label which is which.
- 2. Place the test tubes in a water bath (60 °C), along with 3 test tubes of 5 cm³ of 0.1 mol dm⁻³ silver nitrate and leave them all to reach a constant temperature.
- 3. Quickly add the silver nitrate solution from one test tube to the first test tube containing a haloalkane, and start the stopwatch.
- 4. Measure and record the time taken for the precipitates to form (this is a measure of the rate of reaction).
- 5. Repeat steps 3 and 4 for the remaining 2 haloalkanes.

Key points

- This is a nucleophilic substitution reaction where water acts as the nucleophile (hydrolysis).
- Precipitation with Ag⁺:

$$RX + H_2O \rightarrow ROH + H^+ + X^-$$

 $X_{(aq)}^- + Ag_{(aq)}^+ \rightarrow Ag_{(s)}^-$

• The variables you control should be either the nature of the halide (changing CI, Br and I within a particular haloalkane), or the type of alkane (primary, secondary, tertiary with one type of halide). Only change a single variable.

Errors

- Use water bath to control the temperature.
- Use lower temperatures to reduce the rate of reaction. This will make the time difference between haloalkanes larger, giving a lower uncertainty.

Expected Results

Haloalkane	Result
Chloroalkane	White precipitate forms slowly.
Bromoalkane	Cream precipitate forms faster than chloro but slower than iodo.
lodoalkane	Yellow precipitate forms quickly.

These results reflect the **relative carbon-halogen bond strengths**. *C-I* is the weakest bond in this series, so the reaction is the fastest.